skip to main content


Search for: All records

Creators/Authors contains: "Qiao, Mingda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We give an nO(log log n)-time membership query algorithm for properly and agnostically learning decision trees under the uniform distribution over { ± 1}n. Even in the realizable setting, the previous fastest runtime was nO(log n), a consequence of a classic algorithm of Ehrenfeucht and Haussler. Our algorithm shares similarities with practical heuristics for learning decision trees, which we augment with additional ideas to circumvent known lower bounds against these heuristics. To analyze our algorithm, we prove a new structural result for decision trees that strengthens a theorem of O’Donnell, Saks, Schramm, and Servedio. While the OSSS theorem says that every decision tree has an influential variable, we show how every decision tree can be “pruned” so that every variable in the resulting tree is influential. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    We consider an online binary prediction setting where a forecaster observes a sequence of T bits one by one. Before each bit is revealed, the forecaster predicts the probability that the bit is 1. The forecaster is called well-calibrated if for each p in [0,1], among the n_p bits for which the forecaster predicts probability p, the actual number of ones, m_p, is indeed equal to p*n_p. The calibration error, defined as \sum_p |m_p - p n_p|, quantifies the extent to which the forecaster deviates from being well-calibrated. It has long been known that an O(T^(2/3)) calibration error is achievable even when the bits are chosen adversarially, and possibly based on the previous predictions. However, little is known on the lower bound side, except an sqrt(T) bound that follows from the trivial example of independent fair coin flips. In this paper, we prove an T^(0.528) bound on the calibration error, which is the first bound above the trivial sqrt(T) lowerbound for this setting. The technical contributions of our work include two lower bound techniques, early stopping and sidestepping, which circumvent the obstacles that have previously hindered strong calibration lower bounds. We also propose an abstraction of the prediction setting, termed the Sign-Preservation game, which may be of independent interest. This game has a much smaller state space than the full prediction setting and allows simpler analyses. The T^0.528 lower bound follows from a general reduction theorem that translates lower bounds on the game value of Sign-Preservation into lower bounds on the calibration error. 
    more » « less
  4. We consider a model of selective prediction, where the prediction algorithm is given a data sequence in an online fashion and asked to predict a pre-specified statistic of the upcoming data points. The algorithm is allowed to choose when to make the prediction as well as the length of the prediction window, possibly depending on the observations so far. We prove that, even without any distributional assumption on the input data stream, a large family of statistics can be estimated to non-trivial accuracy. To give one concrete example, suppose that we are given access to an arbitrary binary sequence x1, . . . , xn of length n. Our goal is to accurately predict the average observation, and we are allowed to choose the window over which the prediction is made: for some t < n and m < n − t, after seeing t observations we predict the average of x_{t+1},..., x{t+m}. This particular problem was first studied in [Dru13] and referred to as the “density prediction game”. We show that the expected squared error of our prediction can be bounded by O(1/log n) and prove a matching lower bound, which resolves an open question raised in [Dru13]. This result holds for any sequence (that is not adaptive to when the prediction is made, or the predicted value), and the expectation of the error is with respect to the randomness of the prediction algorithm. Our results apply to more general statistics of a sequence of observations, and we highlight several open directions for future work. 
    more » « less
  5. We consider a collaborative PAC learning model, in which k players attempt to learn the same underlying concept. We ask how much more information is required to learn an accurate classifier for all players simultaneously. We refer to the ratio between the sample complexity of collaborative PAC learning and its non-collaborative (single-player) counterpart as the overhead. We design learning algorithms with O(ln(k)) and O(ln2 (k)) overhead in the personalized and centralized variants our model. This gives an exponential improvement upon the naïve algorithm that does not share information among players. We complement our upper bounds with an Ω(ln(k)) overhead lower bound, showing that our results are tight up to a logarithmic factor. 
    more » « less